ORCA-Flash4.0 V3 Digital CMOS camera

C13440-20CU

We’ve advanced our camera technology, so you can advance your science

Building on our extensive experience with high performance scientific cameras and advanced imaging applications, Hamamatsu introduces the new ORCA-Flash4.0 V3. This one camera expertly handles applications ranging from the acquisition of beautiful scientific images to experiments that demand detection, quantification and speed. With on-board FPGA processing enabling intelligent data reduction, highly refined in-camera, pixel-level calibrations, increased USB3.0 frame rates, purposeful and innovative triggering capabilities, patented lightsheet read out modes and individual camera noise characterization the ORCA-Flash4.0 V3 is the precision instrument for imaging.

 

ORCA is a registered trademark of Hamamatsu Photonics K.K. (China, EU, Japan, UK, USA).

Features

  • Calibrated for Quantitative Accuracy
  • Flexibility for Customized Data Control
  • Patented Tools for Advanced Imaging: Lightsheet Readout Mode
  • Focus on the Relevant Data
  • Powerful Triggering for Synchronizationa

Lightsheet Readout Mode [Patented]

“Lightsheet Readout Mode” is a unique and patented feature of Hamamatsu sCMOS cameras which can improve signal to noise ratios in Lightsheet microscopy.
For more information about the principle and features of Lightsheet Readout Mode, please see details from below.

 

What is Lightsheet Readout Mode?

Movie gallery

3D animation of Amoeba scanned by DSLM

GFP-labeled zebrafish blood flow

High speed (400 fps) zebrafish cardiac beat

iPS cardiomyocyte membrane voltage dynamics (high resolution)

Localization microscopy acquisition

Dynamic movement of shrimp swimmeret

Spinning disk confocal pollen z scan images

Filopodial protrusion dynamics

High-speed intracellular Ca gradient driven by UTP stimulation

Microtubule growth dynamics TIRF

PKC translocation driven by TEA stimulation

High-speed Ca imaging of iPS cardiomyocyte

Publications

ORCA-Flash4.0
Authors Title Source
Xuanze Chen, Zhiping Zeng, Rongqin Li, Boxin Xue, Peng Xi, Yujie Sun Superior performance with sCMOS over EMCCD in super-resolution optical fluctuation imaging Journal of Biomedical Optics
Luchang Li, Mengting Li, Zhaoning Zhang, Zhen-Li Huang Assessing low-light cameras with photon transfer curve method Journal of Innovative Optical Health Sciences
S Hayashi, Y Okada Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics Molecular Biology of the Cell
Matthias Mehling, Tino Frank, Cem Albayrak, Sava? Tay Real-time tracking, retrieval and gene expression analysis of migrating human T cells Lab on a Chip
Ying S. Hu, Maxwell Zimmerley, Yu Li, Robin Watters, and Hu Cang Single-Molecule Super-Resolution Light-Sheet Microscopy ChemPhysChem
Peter W Winter and Hari Shroff Faster fluorescence microscopy: advances in high speed biological imaging Current Opinion in Chemical Biology
Ronny Forster, Hui-Wen Lu-Walther, Aurelie Jost, Martin Kielhorn, Kai Wicker, and Rainer Heintzmann Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator Optics express
Jeffrey P. Nguyen, Frederick B. Shipley, Ashley N. Linder, George S. Plummer, Joshua W. Shaevitz, and Andrew M. Leifer Whole-brain calcium imaging with cellular resolution in freely behaving C. elegans Neurons and Cognition
Zong W, Zhao J, Chen X, Lin Y, Ren H, Zhang Y, Fan M, Zhou Z, Cheng H, Sun Y, Chen L. Large-field high-resolution two-photon digital scanned light-sheet microscopy  Cell Res. 2014 Sep 26. doi: 10.1038/cr.2014.124. [Epub ahead of print]
Vladimirov N, Mu Y, Kawashima T, Bennett DV, Yang CT, Looger LL, Keller PJ, Freeman J, Ahrens MB. Light-sheet functional imaging in fictively behaving zebrafish Nat Methods. 2014 Jul 27. doi: 10.1038/nmeth.3040. [Epub ahead of print]
Mickoleit M, Schmid B, Weber M, Fahrbach FO, Hombach S, Reischauer S, Huisken J. High-resolution reconstruction of the beating zebrafish heart Nat Methods. 2014 Jul 20. doi: 10.1038/nmeth.3037. [Epub ahead of print]
Vettenburg T, Dalgarno HI, Nylk J, Coll-Lladó C, Ferrier DE, Čižmár T, Gunn-Moore FJ, Dholakia K. Light-sheet microscopy using an Airy beam Nat Methods. 2014 May;11(5):541-4. doi: 10.1038/nmeth.2922. Epub 2014 Apr 6.
Juette MF, Terry DS1, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC. The bright future of single-molecule fluorescence imaging Curr Opin Chem Biol. 2014 Jun 20;20C:103-111. doi: 10.1016/j.cbpa.2014.05.010.
Menon M, Askinazi OL, Schafer DA. Dynamin2 organises lamellipodial actin networks to orchestrate lamellar actomyosin PLoS One. 2014 Apr 7;9(4):e94330. doi: 10.1371/journal.pone.0094330. eCollection 2014.
Gualda EJ, Vale T, Almada P, Feijó JA, Martins GG, Moreno N. OpenSpinMicroscopy: an open-source integrated microscopy platform Nat Methods. 2013 Jul;10(7):599-600. doi: 10.1038/nmeth.2508. Epub 2013 Jun 9.
Fahrbach FO, Voigt FF, Schmid B, Helmchen F, Huisken J. Rapid 3D light-sheet microscopy with a tunable lens Opt Express. 2013 Sep 9;21(18):21010-26. doi: 10.1364/OE.21.021010.
Fullerton S, Bennett K, Toda E, Takahashi T. Optimization of precision localization microscopy using CMOS camera technology Proc. SPIE 8228, Single Molecule Spectroscopy and Superresolution Imaging V, 82280T (February 9, 2012); doi:10.1117/12.906336; http://dx.doi.org/10.1117/12.906336
Fullerton S, Bennett K, Toda E, Takahashi T. Camera simulation engine enables efficient system optimization for super-resolution imaging Proc. SPIE 8228, Single Molecule Spectroscopy and Superresolution Imaging V, 822811 (February 9, 2012); doi:10.1117/12.906346; http://dx.doi.org/10.1117/12.906346
Singh AP, Krieger JW, Buchholz J, Charbon E, Langowski J, Wohland T. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy. Opt Express. 2013 Apr 8;21(7):8652-68.
Ahrens MB, Keller PJ. Whole-brain functional imaging at cellular resolution using light-sheet microscopy.  Nat Methods. 2013 Mar 18. doi: 10.1038/nmeth.2434.
Long F, Zeng S, Huang ZL. Localization-based super-resolution microscopy with an sCMOS camera part II: experimentalmethodology for comparing sCMOS with EMCCD cameras. Opt Express. 2012 Jul 30;20(16):17741-59.
Baumgart E, Kubitscheck U. Scanned light sheet microscopy with confocal slit detection. Opt Express. 2012 Sep 10;20(19):21805-14.
Takao D, Nemoto T, Abe T, Kiyonari H, Kajiura-Kobayashi H, Shiratori H, Nonaka S. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. Dev Biol. 2013 Apr 1;376(1):23-30. 
Huang F, Hartwich TM, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, Uchil PD, Myers JR, Baird MA, Mothes W, Davidson MW, Toomre D, Bewersdorf J. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods. 2013 May 26. doi: 10.1038/nmeth.2488.
Ma H, Kawai H, Toda E, Zeng, S, Huang ZL Localization-based super-resolution microscopy with an sCMOS camera part III: camera embedded data processing significantly reduces the challenges of massive data handling Optics Letters, Vol. 38, Issue 11, pp. 1769-1771 (2013)
Baumgart E., Kaminski T. Scanned LSFM with Confocal Detection. Imaging and Microscopy, Volume 15, Issue 1 2013.
Xu D, Jiang T, Li A, Hu B, Feng Z, Gong H, Zeng S, Luo Q. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device. J Biomed Opt. 2013 Jun;18(6):60503. doi: 10.1117/1.JBO.18.6.060503.

PC recommendations

With the introduction of the ORCA-Flash4.0, users are now able to stream 4 megapixel images to their computers 100 frames per second. The computer recommendations for this high data rate can be met by using the guidelines listed this PC Recommendations for ORCA-Flash4.0.

Software

Our software provides the interface to access all of our carefully engineered camera features, from simply setting exposure to orchestrating complex triggering for multidimensional experiments.

Specifications

Type number C13440-20CU
Imaging device sCMOS
Effective no. of pixels 2048 (H)×2048 (V)
Cell size 6.5 μm×6.5 μm
Effective area 13.312 mm×13.312 mm
Full well capacity 30 000 electrons (typ.) *
Readout speed 100 frames/s (Full resolution, standard scan, Camera Link) *
40 frames/s (Full resolution, standard scan, USB 3.0, 16 bit) *
53 frames/s (Full resolution, standard scan, USB 3.0, 12 bit) *
80 frames/s (Full resolution, standard scan, USB 3.0, 8 bit) *
Readout noise Standard scan (at 100 frames/s, typ.):1.6 electrons rms (1.0 electrons median)
Slow scan (at 30 frames/s, typ.): 1.4 electrons rms (0.8 electrons median)
Cooling method Peltier cooling
Cooling temperature Forced air (Ambient at +20 ℃): -10 ℃
Water (+20 ℃): -10 ℃
Water (+15 ℃): -30 ℃
Dark current 0.06 electrons/pixel/s (Air Cooled to -10° C) (typ.)
0.06 electrons/pixel/s (Water Cooled to -10° C) (typ.)
0.006 electrons/pixel/s (Water Cooled to -30° C) (typ.)
Dynamic range 37 000:1 (typ.)
Interface Camera Link / USB 3.0
A/D converter 16 bit / 12 bit / 8 bit
Lens mount C-mount
* Typical value 2 Enabled with optional Camera Link board for PC

Spectral response

C13440-20CU Spctral response

Dimensions

c13440-20cu dimensional outline

Instruction manual

Related documents

Contact us for more information.

  • Literature
  • Price
  • Delivery
  • Custom order
  • Demo
  • Support
  • Other

Contact us