

WHAT'S BEHIND THE ? PICTURE?

Choosing and using scientific cameras

Choosing and Using Scientific Cameras

1 The image problem 2 { Think in photons Real cameras are not perfect 4 Know thyself **5** The Living Image: Case Studies

Choosing and Using Scientific Cameras

```
1 The image problem
2 Think in photons
Real cameras are not perfect
4 { Know thyself
5 The Living Image: Case Studies
```


The Image Problem...

The Image Problem...

A pretty picture?

A measurement?

A resource?

A reference?

Courtesy: Prof. Jason Swedlow University of Dundee, Scotland Open Microscopy Environment

$\{1\}$

THE IMAGE PROBLEM

LOOK CAREFULLY

- Eyes can be fooled
 - Not good at quantifying greys
 - Not objective
 - Emphasizes patterns and colors
 - Viewing environment
- Screens are not capable of displaying full bit depth
- Image display can (and should be!)
 manipulated for on screen viewing

$\set{1}$

THREE IDENTICAL IMAGES?

$\{1\}$

THREE IDENTICALLY DISPLAYED IMAGES!

200 photons

500 photons

1000 photons

$\{1\}$

THREE DIFFERENT INTENSITIES?

$\left\{ \ 1 \ \right\}$ Three Different Displays of the Same Intensity!

1000 photons

1000 photons

1000 photons

 $\{1\}$

HISTOGRAM AND AREA STATISTICS

Choosing and Using Scientific Cameras

1 { The image problem 2 Think in photons Real cameras are not perfect 4 { Know thyself 5 { The Living Image: Case Studies

 $\{2\}$

THINKING IN PHOTONS

SCIENTIFIC CAMERAS SHOULD MEASURE PHOTONS

 $\{2\}$

PHOTONS REALLY MATTER

Truth

100 photons peak

Looks similar, but

- The histogram is different
- Information is different
- Quantification different
- Lower image contrast

Perfect camera Background = Peak/10

REMEMBER SHOT NOISE

$$N_S = \sqrt{S}$$

 $\{2\}$

THINKING IN PHOTONS

WHAT'S LIMITING MY SCIENCE?

- The information in an image is limited by the number of photons.
- A perfect camera does not produce a perfect image, especially if photons are limited.
- The minimum number of photons needed depends upon the object imaged, resolution and measurement requirements (i.e. your experiment).

PHOTONS REALLY MATTER

ARE YOU CONVINCED?

Choosing and Using Scientific Cameras

- 1 { The image problem
- 2 { Think in photons
- 3 { Real cameras are not perfect
- 4 { Know thyself
- 5 { The Living Image: Case Studies

REAL CAMERAS: THINKING IN PHOTONS

HOW
DOES THIS
MAKE ME
A BETTER
MICROSCOPIST?

- Makes comparisons among cameras meaningful. (ADUs are arbitrary)
- Brings relevance to your data.
- Knowing the number of photons and contrast in sample is key to picking the correct camera.

${3}$

REAL CAMERAS

THINKING IN PHOTONS REALLY NECESSARY?

 Can't we figure everything out from a camera specs (QE and electronic specs)?

[Hint: Maybe, but there's a better way]

SCIENTIFIC CAMERAS SHOULD MEASURE PHOTONS

REAL CAMERAS ARE NOT PERFECT

THE WHAT AND How

- The Gap
- Electron multiplying CCDs (EMCCDs)
- Simulations comparing perfect to product by spec
- All pixels are not created equal
- Actual product measurements
- Camera noise & visualization

Why is a camera manufacturer proclaiming that cameras are not perfect?

Because NO camera is perfect &

Because understanding why matters to your science

{3} WHAT IS THE GAP?

The difference between the performance of an actual camera and a theoretically perfect camera

Understanding WHY there is a Gap enables:

- Appropriate camera selection
- Optimized camera usage
- Optimized experimental design
- More reliable data analysis

Better Results

THE GAP DEPENDS ON:

1. Sensor technology CCD EMCCD SCMOS

2. Camera specs

Quantum Efficiency

Camera Noise

- Read noise
- Excess noise
- Photo-response non-uniformity (PRNU)

3. Input photon level

Ultra low light
Low Light
Intermediate
High

3 THE (HYPOTHETICAL) PERFECT CAMERA

100% QE { Every photon is converted into one electron

read noise { Every electron is digitized exactly as expected every time

0% fixed { Every pixel and amplifier perform identically and predictably pattern noise {

In a perfect camera, the SNR of a single pixel is limited only by the physics of photon statistics... i.e. shot noise.

$$SNR = \sqrt{S}$$

Perfect Camera Signal to Noise Ratio

REAL CAMERAS ARE NOT PERFECT

ImagEM X2 EMCCD: Electron Multiplying CCD

ORCA-Flash4.0 V2
Scientific CMOS
Camera

ORCA-R2
Cooled Interline CCD

{3} BASIC SPECS: COMPARED

	CCD	EMCCD	CMOS
Camera Name	ORCA-R2	ImagEM x2	ORCA Flash4.0 V2
QE (550 nm)	70 %	90 %	72 %
Read Noise Single Frame rms (e-)	6	< 0.5 (M = 200)	1.5
Full Well Capacity (e-)	18,000	Gain dependent	30,000
Dynamic Range	3000:1	Gain dependent	20,000:1
Bit Depth	16	16	16
Max pixel rate (Mps)	13	18	420
Pixel Size (μm)	6.45 x 6.45	16 x 16	6.5 x 6.5
Pixel Number	1024 x 1344	512 x 512	2048 x 2048

(3) AMPLIFIERS

Important differences

```
CCD and sCMOS EMCCD
```


ELECTRON MULTIPLYING CCDs (EMCCDs)

- A type of CCD: Frame transfer and back-thinned for increased QE
- Frame transfer requires ~ 100μs
- Serial devices where each pixel's charge is read out one at a time
- High voltage gain register on sensor for on-chip amplification.
- Option to read out through EM circuitry or non-EM circuit (normal CCD mode)

(b)

EMCCD architecture

CMOS AND CCD AMPLIFIER NOISE

Output an exact multiple of the input

No noise broadening

CMOS read noise: 1.5 e- rms

Output is a multiple of the input

"Read noise" broadening

Width independent of signal level

EMCCD AMPLIFIER NOISE DEPENDS ON SIGNAL

CMOS and CCD amplifier 1.2 1 0.8 0.6 0.4 0.2 0 -5 0 5 10 15 20 25 30 35 40 45 Output electron

No electron:

- Very small noise
- beautiful blacks

Signal:

- Broad (excess noise)
- Long tail: larger apparent contrast

Signal independent

- No excess noise
- Short tail

EMCCDs "DETECT" SINGLE PHOTONS, BUT

Peak of 1e- output is ~0.4e-!

Signal < (some) noise

Long tail

Symmetric distribution, with noise extending $\sim \pm 2 \sigma$ (3 e-) from mean.

Significant overlap

Quantization of ADC not included

EMCCDs can't count

Outputs from 1e⁻ and 2e⁻ overlap.

Peak output of 2e⁻ input is ~ 1e⁻

CMOS not so good either at very low light

2e⁻ input, CMOS tail is shorter than EMCCD

EMCCD: SIGNAL DEPENDENT NOISE

Most probable output < mean.

Very long tail

 σ^2 = signal

Lots of overlap: 10e⁻ & 20e⁻

Most probable output = mean

Short tail

 $\sigma^2 = 1.5 e$

CMOS clearly better

EMCCD OUTPUT INCLUDING PHOTON SHOT NOISE

In simulated probability distribution functions for EMCCD, the output at high gain is **not** Poisson due to the electron multiplication process!

EMCCD VS. CMOS AMPLIFIERS

Stochastic EM amplification:

- Very low noise without input
- Excess noise effectively doubles photoelectron shot noise $(F_n^2 = 2)$
- Asymmetric output distribution
 - At low light, peak output is much below mean
 - Long tail

CMOS

- Noisier with no or very low input
- Noise independent of signal

ELECTRON MULTIPLYING CCDs

Are they really what you thought?

SIMPLE (PIXEL) SNR EQUATION

$$SNR = \frac{QE*S}{F_n^2*QE*(S+I_b)+(N_r/M)^2}$$

Terms included:

QE: Quantum Efficiency

S: Input Signal Photon Number (photon/pixel)

 F_n : Noise Factor

(= 1 for CCD/sCMOS and √2 for EM-CCD)

N_r: Readout Noise

M: EM Gain (=1 for CCD / CMOS)

Ih: Background

Not included:

Dark Noise: Dark current X time;

considered negligible

Photo response non uniformity:

necessary for image SNR

${3}$

RELATIVE SNR: DISPLAYS IMPERFECTIONS PERFECTLY

rSNR is the SNR for a camera plotted relative to the perfect camera

rSNR shows differences among cameras over full range of signal level

READ NOISE REDUCES RSNR ONLY AT LOW LIGHT

EMCCDs: Excess Noise Creates a Gap

SNR for CCD / CMOS

$$SNR = \frac{QE \times P}{\sqrt{QE \times P}}$$
$$= \sqrt{QE \times P}$$

QE: Quantum Efficiency,

P: Input Signal Photon Number,

M: EM Gain

 F_n : Noise Factor

(assumes dark current and read noise are negligible)

$$SNR = \frac{M \times QE \times P}{F_{n} \times M \times \sqrt{QE \times P}} = \sqrt{\frac{QE \times P}{F_{n}^{2}}}$$
$$= \sqrt{QE_{eff} \times P}$$

$$QE_{eff} = \frac{QE}{F_n^2} = \frac{QE}{2}$$

EMCCDs

- Stochastic EM amplification adds excess noise
- Excess noise effectively lowers the SNR to a detector with ½ the QE

Effective QE in EMCCDs

MIND THE GAP: PREDICTED PIXEL rSNR PERFORMANCE FOR COMMON CAMERAS

A camera with the highest SNR at the lowest light level may not be the best at higher light levels

The SNR of an EMCCD above 1 electron/pixel is comparable to a camera with QE_{eff} =QE/2 due to excess noise from EM gain.

 $\lambda = 650 \text{ nm}$

ARE ALL PIXELS THE SAME?

- Offset non-uniformity
- Photo response nonuniformity (PRNU)
- Dark signal nonuniformity (DSNU)
- Read noise distribution

ACCURATE MEASUREMENT OF THE NUMBER OF PHOTONS

OFFSET NON-UNIFORMITY

Pixel to pixel variation of readings in the dark

If the zero is incorrect, then absolute measurement is also incorrect.

- Most noticeable in dark or low light conditions.
- Usually expressed as DN or e-, rms.
- For scientific cameras, should be less than read noise.

{3}

ACCURATE **MEASUREMENT** OF THE NUMBER OF **PHOTONS PHOTO RESPONSE NON-UNIFORMTIY**

PRNU: pixel to pixel variation of the response to light (DN / photon)

- QE variation: conversion rate of photon to e⁻
 (may be spectrum dependent)
- Electronic gain variation: Conversion factor from e- to DN

If the unit length incorrect, then absolute measurement is also incorrect.

- Most noticeable in higher light conditions.
- May have spatial pattern, stable over time.
- Usually expressed as % maximum.

ACCURATE MEASUREMENT OF THE NUMBER OF PHOTONS

TOTAL FIXED PATTERN NOISE

Total **pixel-to-pixel** variation in the accuracy of the measurement of the number of photons. Includes

- Offset non-uniformity
- Photo-response non-uniformity

Overall specification of the non-uniformity measurement across the image sensor Does not include:

- Errors in average QE
- Temporal noise (excess noise, read noise)
- Dark current and dark current shot

DARK SIGNAL NON-UNIFORMITY (DSNU)

Pixel-to-pixel variation in dark current

Offset: dark signal x exposure time.

Noise : $\sqrt{\text{offset in e-}}$

How big?

- Proportional to exposure time.
- Can be >100 e- / sec for a few pixels, especially for sensors > 0C
 For a given image sensor, a multiple of average dark current
 Doubles for each ~8C increase in sensor temperature

- Higher noise for high dark current pixels due to dark shot noise.

Which technologies?

Correction

- Identify high noise pixels and correct in imageDark shot noise can NOT be corrected.

READ NOISE UNIFORMITY: CCD & EMCCD

CCDs and EMCCDs: All pixels are readout through the same amplifier and digitization circuits and therefore read noise is very uniform.

Median = spatial rms

READ NOISE UNIFORMITY: CMOS

CMOS: Each pixel has an independent amplifier and each column has an independent amplifier. Read noise is pixel dependent "Median" < spatial rms.

READ NOISE

- **CCDs:** Uniform, readout speed dependent, relatively high.
- EMCCDs: Uniform, gain and readout speed dependent, very low with EM gain > ~50, but relatively high in "normal CCD" mode.
- **sCMOS:** pixel dependent, little dependence on readout speed for a particular camera.

Things to keep in mind

MEASURING THE REAL GAP

An in-depth look at noise in CCD, EMCCD and CMOS cameras

3 A CLEARER WAY TO COMBINE CAMERA SPECIFICATIONS

- Single Frame rSNR
 Summarizes whole sensor performance
 - QE
 - Gain
 - Noise: including spatial rms read noise, excess noise, dark shot noise
 - Fixed pattern noises, including offset nonuniformity and PRNU
 - Saturation

ORCA-R2 Interline CCD: Predictable and Robust

PRNU is insignificant

Bright Image: shot noise limited

Mean intensity: 17,300 e-

σ: 130.5e-

PRNU: not measurable

Shot Noise

Read Noise

EMCCD: Some Surprising Results

- 1. Thickness variations from backthinning process causes spectrallydependent PRNU
 - Cannot be removed during manufacturing
 - Must be calibrated by users for *their* specific spectrum.
 - Individual pixel map required for correction
- 2. The Gap for EMCCD in CCD mode becomes very wide due to PRNU

COMPLEX BEHAVIOR: A CLOSER LOOK AT EMCCD SNR WITH

HIGH AND LOW GAIN

Complex Behavior

- Excess noise (eQE)
- PRNU
- Saturation
- High read noise (34 e- @ M=5, 70 fps)
- Gain hard to measure

ORCA-FLASH4.0 V2 (sCMOS): A VERY COMFORTABLE SWEET SPOT

THE IMAGE SENSOR IS NOT THE CAMERA: PRNU IS SIGNIFICANT IN "SCIENTIFIC" CMOS IMAGE SENSORS

Signal amplified and digitized in column-parallel ADC. FPGA provides offset and gain correction to the raw digitized signal.

3 scmos: Pixel-Dependent Read noise

Rms read noise matches single frame rSNR.

Single Frame Dark Histogram

Does not fit a Gaussian distribution, i.e. is not completely modeled by a single "read noise."

${3}$

SCMOS: IMPROVING VISUAL IMAGE QUALITY "NOISY" PIXEL FILTERING

Correction OFF Correction ON Controlled LUT 30 photons peak, ~10

photons avg.

Map high noise pixels and selectively replace value with the average of the surrounding pixels.

- Improves contrast & "flicker" with "auto" LUT.
- Small difference with controlled LUT
- Affects only a very small number of pixels in frame

{3} Managing Read Noise

	CCD	EMCCD	CMOS
	Read noise expressed in photons is the key specification. $N_r(ph) = N_r(e-)/QE$		
Specs			Distribution Use spatial or single frame rms, not median rms
Data collection	Analog binning, optical matching Use slowest clock speed possible		Optical matching Use pixel noise filter when possible
Visualization	Set lower threshold to a minimum of offset plus 0 to 3 noise standard deviations		
Statistical noise model	Poisson + uniform Gaussian	Complicated, gain dependent	Poisson + pixel- dependent Gaussian

WHAT ABOUT IMAGES? <

- Perfect and real cameras
- Visualization
- Histograms
- How many photons do you need?

COMPARING CAMERAS: 1000 PHOTON PEAK VISUALLY SIMILAR

sCMOS:

Noise Correction ON

COMPARING CAMERAS: 100 PHOTON PEAK CAMERA NOISE AND / OR VISUALIZATION MATTER

sCMOS:

HARDER TO SEE IN THE DARK: 30 PHOTON PEAK CAMERA & VISUALIZATION CRITICAL

sCMOS:

HISTOGRAMS: MOST SIMILAR TO THE PERFECT CAMERA

Mean photons: ~35% of peak

3 How many photons do I need with a perfect camera?

How many photons do I need with a **REAL** camera?

How to **Narrow the Gap**

- Know what you want to do
 The number of photons required to "see" something depends upon what
 - you want to see, and how clearly you want to see it, even with a perfect camera.
- Turn up the light carefully

 Real cameras reduce image quality, however when there is enough
 - light, all scientific cameras work well
- Visualization matters

Monitor choice, ambient light, LUT settings all make a difference

Use the right camera

Gen II sCMOS cameras have comparable or better image quality

than EMCCDs at light levels typically required for visual imaging

CHOOSING AND USING SCIENTIFIC CAMERAS

1 { The image problem 2 { Think in photons 3 { Real cameras are not perfect 4 Know thyself 5 { The Living Image: Case Studies

KNOW THYSELF

throughput

field of view

sample contrast

frame *rate*

WHAT IS MOST **IMPORTANT** FOR YOUR **EXPERIMENT?**

resolution

accuracy

SAMPLE BRIGHTNESS

minimum bleaching rate

distance measurement

background

4 Consider the entire system

Lightsheet microscopy (SPIM)

Single molecule localization microscopy

Light Sheet Micoscopy

Just like Localization Microscopy LSM has many faces

LSFM - Light Sheet Fluorescence Microscope
SPIM - Single Plane Illumination Microscope
OPM - Oblique Plane Microscopy
sTSLIM - Scanning Thin Sheet Laser Illumination
Microscopy
mSPIM - Multidirectional SPIM

Benefits

- > Better sectioning vs. widefield
- > Less photodamage vs. confocal
- > Fast acquisition of large samples

New developments

- Multiple Cameras
- > Structured Illumination

MuVi-SPIM and SIMView

- Multiple illumination beams and cameras
- Increased isotropy and axial resolution
- Faster scanning with phase or wavelength separation of offset beams

sCMOS is >20x faster than EMCCDs

A Drosophila embryo approximately 3 hours post fertilization (top: dorsal view, bottom: ventral view). The embryo, which expresses a genetically encoded marker labeling all cell nuclei, was recorded simultaneously from four different directions with a SiMView light-sheet microscope equipped with two Hamamatsu ORCA-Flash4.0 cameras. William Lemon and Philipp Keller, HHMI/Janelia Farm. http://www.janelia.org/lab/keller-lab

LIGHT SHEET MICROSCOPY

http://thelivingimage.hamamatsu.com/ http://player.vimeo.com/video/74253101

LIGHT SHEET MICROSCOPY

CRITICAL CAMERA
CHARACTERISTICS

- Large field of view (high pixel number)
- High speed (data rate)
- Large dynamic range
- Reasonably low noise
- Rolling shutter synchronized to sample scanning with variable speed

Camera: ORCA Flash4.0 Scientific CMOS

LIGHT SHEET MICROSCOPY

Light sheet microscopy – matching the camera and optical system

http://www.hamamatsu.com/sp/sys/en/promotion/mp4/s_Lightsheet_en.html

OPTIMALLY USING THE CAMERA FOR THE TASK

CCD

Subnanometre single-molecule localization, registration and distance measurements

Alexandros Pertsinidis^{1,2}, Yunxiang Zhang^{1,2} & Steven Chu^{1,2,3,4}†

ENCCD

Ultrahigh accuracy imaging modality for super-localization microscopy

Jerry Chao¹⁻³, Sripad Ram¹⁻³, E Sally Ward² & Raimund J Ober^{1,2}

Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms

Fang Huang¹, Tobias M P Hartwich^{1-3,9}, Felix E Rivera-Molina^{1,9}, Yu Lin^{4,5}, Whitney C Duim¹, Jane J Long⁶, Pradeep D Uchil⁷, Jordan R Myers¹, Michelle A Baird⁸, Walther Mothes⁷, Michael W Davidson⁸, Derek Toomre¹ & Joerg Bewersdorf^{1,4,5}

STANDARD PRACTICE IS NOT THE BEST PRACTICE: USING EMCCD WITH GAIN YIELDS LEAST ACCURATE RESULTS

Mean	Ultimate	Conventional	UAIM at 900×	UAIM at 4500>	CCD accuracy limit ^a (nm)
photon	accuracy	EMCCD accuracy	accuracy	accuracy	
count	limit (nm)	limit (nm)	limit (nm)	limit (nm)	
200	4.84	9.71 [100.6%]	5.41 [11.8%]	5.13 [6.0%]	7.94 [64.0%]
400	3.42	6.94 [102.9%]	3.92 [14.6%]	3.63 [6.1%]	5.26 [53.8%]
800	2.42	4.93 [103.7%]	2.85 [17.8%]	2.57 [6.2%]	3.45 [42.6%]
1600	1.71	3.49 [104.1%]	2.08 [21.6%]	1.82 [6.4%]	2.32 [35.7%]
3200	1.21	2.48 [105.0%]	1.52 [25.6%]	1.30 [7.4%]	1.57 [29.8%]

^aComputed at near-optimal magnification (i.e., magnification that yields approximately the best localization accuracy limit) of 128.6×, 185.7×, 185.7×, 185.7×, and 242.9× for mean photon count of 200, 400, 800, 1600, and 3200, respectively.

CCD QE: 100%, read noise = 1.8 ph, no background; No fixed pattern noise.

... "the fact that the noise coefficient approaches 1 with increasing photon count demonstrates the suitability of the CCD (CMOS) detector when enough light is available...."

electrons, the CCD detector is unsuitable for UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Which is a low readout noise of \$\sigma = 2\$

UAIM."

Adapted from: J. Chao et al (Ober Lab), Nat. Meth10, 2013) doi:10.1038/nmeth.2396 http://www.wardoberlab.com/

Uncorrected PRNU can Lead to Localization Bias

Localization distribution & bias

Impact of PRNU on localization bias:

0.5% PRNU: 1 – 2 nm @ 100 nm/ pixel

Courtesy: Zhen-li Huang, Huazhong University of Science and Technology, (unpublished)

COMPENSATING READ NOISE VARIATION

Incorporating pixel-specific read noise into the Maximum Likelihood Probability Model eliminates and narrows the asymmetric distribution of localized molecules caused by higher read noise pixels.

Courtesy F. Huang, Bewersdorf Lab

MLE RECONSTRUCTION MUST USE A NOISE MODEL INCLUDING CAMERA NOISE

Note: MLE for EMCCDs are also difficult:

Simple and good

- Inaccurate gain
- Output PDF not Poisson
- Even at "high" light, the variance is 2X the mean signal (in photons).

Courtesy: Zhen-li Huang, Huazhong University of Science and Technology, (unpublished)

SELECTING AND USING CAMERAS: CASE STUDIES

CCD

Subnanometre single-molecule localization, registration and distance measurements

Alexandros Pertsinidis^{1,2}, Yunxiang Zhang^{1,2} & Steven Chu^{1,2,3,4}†

Ultrahigh accuracy imaging modality for super-localization microscopy

Jerry Chao¹⁻³, Sripad Ram¹⁻³, E Sally Ward² & Raimund J Ober^{1,2}

Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms

Fang Huang¹, Tobias M P Hartwich^{1-3,9}, Felix E Rivera-Molina^{1,9}, Yu Lin^{4,5}, Whitney C Duim¹, Jane J Long⁶, Pradeep D Uchil⁷, Jordan R Myers¹, Michelle A Baird⁸, Walther Mothes⁷, Michael W Davidson⁸, Derek Toomre¹ & Joerg Bewersdorf^{1,4,5}

Subnanometre single-molecule localization, registration and distance measurements

Alexandros Pertsinidis^{1,2}, Yunxiang Zhang^{1,2} & Steven Chu^{1,2,3,4}†

Results $\begin{cases} \text{Accurate measurement of the } \textit{distance} \text{ between two} \\ \text{fluorophores of different colors. } \sigma_{\text{distance}} \sim 0.77 \text{ nm using a} \\ \text{dichroic beamsplitter to direct each color of light to separate} \\ \text{halves of the CCD camera.} \end{cases}$

Camera Measured PRNU maps for each color. Improved localization relative accuracy by ~2–4 nm.

Details

Speed: 5 – 50 s / measurement Imaging: Simultaneous 2 color

Light: ~4,000 – 10,000 ph/ mol/frame
 ~10⁵ ph / mol before bleaching

CCD, gain off

Nature (2010) | doi:10.1038/nature09163

Ultrahigh accuracy imaging modality for super-localization microscopy

> Jerry Chao¹⁻³, Sripad Ram¹⁻³, E Sally Ward² & Raimund J Ober^{1,2}

Cholera toxin B subunit

scale bar: 1 µm

Results

Localization Microscopy with Minimal Bleaching. Plasma membrane dynamics for > 60 s (594 frames). 40% better localization precision than "conventional" EMCCD localization

Camera Implemented detailed statistical EM noise model into maximum likelihood reconstruction probability model.

Speed: ~60s / reconstructed image Mag: 630X
Light: ~100 photons /molecule frame Camera: EM

Camera: EM-CCD, Gain ~1000

Courtesy of J. Chao et al (Ober Lab) Adapted from Nat Meth (2013) doi:10.1038/nmeth.2396

Localization Precision "conventional" EMCCD vs. sCMOS

Courtesy of F. Huang. Bewersdorf Lab, Yale Adapted from F. Huang et al., Nature Methods 10(7): 653-658 (2013)

MINIMIZING THE GAP: MATCHING THE CAMERA TO YOUR NEEDS

Choosing and Using Scientific Cameras

```
1 { The image problem
2 { Think in photons
3 { Real cameras are not perfect
4 Know thyself
5 The Living Image
```


RESOURCES FOR MICROSCOPISTS

http://thelivingimage.hamamatsu.com

ACKNOWLEDGEMENTS

Prof. Zhen-li Huang, Huazhong University of Science and Technology

F. Long et al, OPTICS EXPRESS 17741 (2012)

Prof. Joerg Bewersdorf, Yale University

F. Huang et al., Nature Methods 10(7): 653-658 (2013)

Prof. Raimund Ober, Texas Southwestern University

J. Chao et al, Nat Meth (2013) doi:10.1038/nmeth.2396

Prof. Lars Hufnagel, EMBL

Dr. Philip Keller, Janelia Farms

<u>Hamamatsu</u>

Teruo Takahashi: simulations

Hiroyuki Kawai: camera measurements Stephanie Fullerton: presentation guidance Katsuhide Ito: Lightsheet microscopy

Eiji Toda: budget

Download (look on The Living Image)

Keith Bennett

kbennett@hamamatsu.com

32 fps dynamics. 500 nm scale Courtesy Vutara / Prof. Bewersdorf