ORCA®-Quest IQ qCMOS® 相机

C15550-23UP

推动新发现:ORCA®-Quest IQ 是一款适合每一位研究人员的高性能、高灵活性的相机。

ORCA-Quest IQ 继承了 ORCA-Quest 系列的核心特点——低噪声、高分辨率、高量子效率。Camera Link 输出的新功能使相机能够支持自适应光学和超分辨率显微镜等高级用途。这些用途需要通过 Camera Link 接口的控制系统来进行图像采集、处理并向外围设备进行高速反馈。​

 

ORCA 是滨松光子学株式会社(中国、欧盟、法国、德国、日本、英国、美国)的注册商标。

qCMOS® 是滨松光子学株式会社(中国、欧盟、日本、英国、美国)的注册商标。

特点

  • 读出噪声(典型值):超静音扫描时 0.30 个电子 (rms)
  • 有效像素数:4096 (H) × 2304 (V)
  • 量子效率:85%(峰值 QE 在 460nm 处)

帧速率:Camera Link 标准基本配置/完整配置

Camera Link 的历史可追溯至 21 世纪初,其采用 LVDS(低压差分信号),高度抗电噪声。该标准即使在嘈杂的环境中也能提供高可靠性和稳定的操作,并且仍然被许多帧抓取板和图像处理设备广泛采用。ORCA-Quest IQ 支持基本/完整配置标准,以满足客户的各种需求。

基本配置 *1*2

像素合并 (像素) Y(像素) 帧速率 (帧/秒)
1 × 1 4096 2304 7.19
2048 2048 16.1
1024 1024 64.7
512 512 259
256 256 1030
256 4 19 800
2 × 2 2048 1152 28.7
4 × 4 1024 576 115

完整配置 *1*3

像素合并 (像素) Y(像素) 帧速率 (帧/秒)
1 × 1 4096 2304 28.7
2048 2048 64.7
1024 1024 259
512 512 532
256 256 1040
256 4 19 800
2 × 2 2048 1152 115
4 × 4 1024 576 120

*1:使用 Camera Link 输出功能时,相机控制仅限于 USB 3.1 Gen1。

*2:单 Camera Link 电缆连接。

*3:双 Camera Link 电缆连接。

由 ORCA-Quest 演化而来

ORCA-Quest IQ 是一款 qCMOS 相机,继承了 ORCA-Quest 系列的核心特点,低噪声、高分辨率、高量子效率,并引入了新的 Camera Link 输出功能。​

有关相机核心特点的详细信息,请参阅 ORCA-Quest 2 qCMOS 相机页面。

相机文章

qCMOS 相机与 EM-CCD 相机 vol.1 – 光子计数相机的性能比较

本文将指导您为您的用途选择合适的光子计数相机。

 

用途

中性原子,离子阱

中性原子和离子在阵列中逐个排列,用作量子计算的量子位。量子位状态可以通过观察它们各自散发的荧光来确定。鉴于荧光测量需要在短时间内完成,故还需要具有极低噪声和很高速度的光电检测器。ORCA-Quest 2 既可以对整个量子位阵列进行诊断,也可以对每个量子位进行状态检测,具有极低的噪声特性和快速读出能力。此外,QE 覆盖主要离子和原子物质的广泛波长范围。

使用 ORCA-Quest 对 Rb 原子阵列进行荧光成像

数据由大阪大学山本隆教授和小林俊辉助理教授友情提供

量子光学

量子光学使用单光子源来利用单光子的量子特性。鉴于光子数分辨探测器在量子光学调查研究中的用途,对光子数分辨探测器的需求日益增长,以准确区分进入探测器的光子数。光子计数相机是相机技术领域的一个新概念,有望在该领域取得全新发现。

使用 ORCA-Quest 进行量子成像的实验设置

使用 ORCA-Quest 进行量子成像的图像

数据由格拉斯哥大学 Miles Padgett 友情提供

案例研究

超分辨率显微镜

超分辨率显微镜是指一系列获取空间分辨率高于衍射界限的显微镜图像的方法。超分辨率显微镜需要具有极低噪声和小像素尺寸的科学相机,从而实现更高的分辨率。 

ORCA-Quest 生成的超高分辨率图像

qCMOS 相机 / 4.6 μm像素尺寸

ORCA-Fusion 生成的超高分辨率图像

Gen III sCMOS 相机/6.5 μm 像素尺寸

使用 ORCA-Quest 进行实验设置

数据由 VisiTech International 的 Steven Coleman 提供,该图像采用 VT-iSIM 这种高速超分辨率活细胞成像系统/仪器生成。

生物发光

生物发光显微镜因其相对于传统荧光显微镜的独特优势(如无需激发光)而备受关注。生物发光的主要缺点是光强度极低,导致曝光时间长且图像质量低。生物发光调查研究需要高灵敏度相机,甚至长时间曝光也是如此。

同时双波长发光成像

NanoLuc 融合蛋白质 ARRB2 和 Venus 融合蛋白质 V2R 位于附近,即将发生 BRET。

相机:ORCA-Quest + W-VIEW GEMINI

目标:20× / 曝光时间:30 秒 / 像素合并:4×4

显微镜系统的外观

数据来源:Dr. Masataka Yanagawa, Department of Molecular & Cellular Biochemistry Graduate School of Pharmaceutical Science, Tohoku University

植物中的延迟荧光

植物会释放很小一部分光能量,在一段时间内作为光进行光合作用。这种现象被称为延迟荧光。通过检测这种微弱光,可以观察化学物质、病原体、环境和其他应激源对植物的影响。

观赏植物的延迟荧光(在激发光淬灭 10 秒后曝光 10 秒)

案例研究

幸运成像

当从地面观察星星时,由于大气湍流,星星的图像可能模糊,因此大大降低捕获清晰图像的能力。但是,由于曝光时间短且大气条件适宜,有时可以拍摄到清晰的图像。因此,幸运成像是一种获取大量图像并在对齐时仅整合最清晰的图像的方法。

Orion Nebula(带 3 个波长滤光片的彩色图像)

成像设置

自适应光学

通过自适应光学方法,系统可立即校正受大气波动干扰的入射光的波前。为了执行实时和高精度的波前校正,相机必需以高速和高空间分辨率获取图像。此外,由于波前校正是在测量激光导星的极暗状态下执行的,因此相机还需要具备高灵敏度。

通过自适应光学进行波前校正

自适应光学比较

数据来源:Kodai Yamamoto, Ph.D., Department of Astronomy, Kyoto University

案例研究

对于 X 射线或其他高能粒子的成像,通常使用连接了闪烁体的科学相机。成像系统必须需要低噪声和高速度来检测瞬时现象。

小鼠胚胎 X 射线相差 CT 图像

ORCA-Quest 结合高分辨率 X 射线成像系统 (M11427) 生成的小鼠胚胎的 X 射线相差 CT 图像

曝光时间:15 毫秒,总测量时间:6.5 分钟

实验设置

相机设置

数据来源:SPring-8 BL20B2 beamline by Dr. Masato Hoshino, Senior scientist in Japan Synchrotron Radiation Research Institute (JASRI)

案例研究

拉曼效应是波长不同于入射光的光散射。拉曼光谱仪是一种通过测量该波长来确定材料特性的技术。这种光谱仪可在分子层面进行结构分析,提供化学键合、结晶度等方面的信息。

线扫描类型拉曼成像系统中每像素光子数相等条件下的拉曼光谱(单帧)比较

拉曼图像

qCMOS 相机

EM-CCD 相机

PC 建议

随着 ORCA-Quest 的推出,用户现在能够以每秒 120 帧的速度将 940 万像素的图像流式传输到他们的计算机。通过使用 ORCA-Quest PC 建议列出的指南,可以满足计算机对高数据率的建议。

软件

通过我们的软件提供的界面,可访问我们所有精心设计的相机功能,从简单的设置曝光到为多维实验编排复杂的触发。

详细参数

产品编号 C15550-23UP
成像设备 qCMOS 图像传感器
有效像素数 4096 (H) × 2304 (V)
像素尺寸 4.6 μm (H) × 4.6 μm (V)
有效面积 18.841 mm (H) × 10.598 mm (V)
量子效率(典型值) 85%(峰值 QE)
最大阱容(典型值) 7000 个电子
读出噪声(典型值) 标准扫描:0.43 个电子 (rms),0.39 个电子(中位数)
超静音扫描:0.30 个电子 rms (rms),0.25 电子(中位数)
动态范围(典型值) *1 23 000 : 1(rms),28 000 : 1(中位数)
线性误差 0.5%
冷却方法(珀耳帖制冷) 强制风冷(环境温度:+25 ̊C):-10 ̊C
水冷(水温:+25 ̊C)*2:-10 ̊C
水冷【最大制冷(水温: +20 ̊C,环境温度:+20 ̊C)】*2:-25 ̊C(典型值)
暗电流(典型值) 强制风冷(环境温度:+25 ̊C):0.032 个电子/像素/秒
水冷(水温:+25 ̊C)*2:0.032 个电子/像素/秒
水冷【最大制冷(水温:+20 ̊C,环境温度:+20 ̊C)】*2:0.012 个电子/像素/秒
读出模式 全分辨率、数字像素合并(2×2、4×4)、子阵列
全分辨率下的帧速率 标准扫描 *3:120 帧/秒 (CoaXPress),28.7 帧/秒(完整配置) *4, 7.19 帧/秒(基本配置) *4
超静音扫描:25.4 帧/秒 (CoaXPress),25.4 帧/秒(完整配置) *4, 7.19 帧/秒(基本配置) *4
曝光时间 标准扫描*3:7.2 μs 至 1800 s
超静音扫描:33.9 ms 至 1800 s *5
外部触发模式 边缘/全局复位边缘/电平/全局复位电平/同步读出/启动
触发延迟功能 0 s 至 10 s,步长为 1 μs
触发输出 全局曝光定时输出/任意行曝光定时输出/触发就绪输出/3 个可编程定时输出/高输出/低输出
主脉冲 Pulse mode: Free running / Start trigger / Burst
Pulse interval: 5 μs to 10 s in 1 μs step
Burst count: 1 to 65 535
数字输出 16 位、12 位、8 位
图像处理功能 缺陷像素校正(开或关,热像素校正 3 步)
接口 USB 3.1 Gen 1 *6,CoaXPress (Quad CXP-6)
图像输出专用接口 *7 Camera Link (SDR-26):基本配置/完整配置
触发输入连接器 SMA
触发输出连接器 SMA
透镜接口 C 型接口
电源 AC100 V 至 AC240 V,50 Hz/60 Hz
用电功耗 约 155 VA
操作环境温度 0 ̊C 至 +35 °C
操作环境湿度 30% 至 80%(无雾气现象)
存储环境温度 -10 ̊C 至 +50 ̊C
存储环境湿度 最高 90% (无雾气现象)

*1:根据超静音扫描中最大阱容与读出噪声的比值计算

*2:水量为 0.46 L/m。

*3:仅正常区域读出模式

*4:使用 USB 接口时,图像会同时从 USB 和 Camera Link 接口输出,传感器的运行速率受限于 Camera Link 接口的速度。在全分辨率下,如果传感器的运行速率超过 17.6 帧/秒,则通过 USB 接口获取的图像的帧可能会丢失。

*5:对于全局复位边缘触发和全局复位电平触发,最短曝光时间均为 67.8 μs。

*6:相当于 USB 3.0 Gen 1。

*7:只有通过 USB I/F 控制相机时,图像才从 Camera Link I/F 输出。无法通过 Camera Link I/F 控制相机。

光谱灵敏度特性

尺寸

我们出版了 ORCA-Quest 客户的案例研究文章。

相关文档

说明手册

技术说明(针对前代型号,ORCA-Quest)

相机阵容目录

相机模拟实验室

当将相机用于工业或研究用途时,必须考虑各种条件(例如待捕获图像的波长和光强度)来选择相机。我们提供“相机模拟实验室”,该工具允许用户在检查模拟图像时直观地比较相机性能导致的成像结果差异。

相机应用案例研究集

同步辐射分析“Ryugu”相机应用案例研究

人们认为,小行星Ryugu仍含有约46亿年前的水和有机化合物,我们的太阳系被认为是在那时形成的。我们采访了负责分析Ryugu样品的Japan Synchrotron Radiation Research Institute (JASRI) 的 Mr. Uesugi,了解分析方法和结果以及未来前景。

本案例研究包括对 Mr. Uesugi的采访,并介绍了我们适用于同步辐射成像的相机产品阵容。

天文相机应用案例研究

天文学是一个进行研究以发现和探索未知天体和天文现象的领域。本手册介绍了此类用途的示例,并识别适用于每种用途的相机。

请联系我们获取更多信息。

  • 资料索取
  • 价格咨询
  • 产品货期
  • 产品定制
  • 演示
  • 技术支持
  • 其他

联系我们